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FY2014 CLARREO SDT Meeting:

Can the Moon be used as an Absolute Exo-
Atmospheric Calibration Target for CLARREQO?

What are the current uncertainties in the
Absolute Exo-Atmospheric Lunar Irradiance? and
How low do we think they might go?

Today’s OUTLINE

e Summarize absolute TOA lunar irradiance measurements
by NIST from the Whipple Observatory, Mt. Hopkins, AZ

* Development of spectrograph-based transfer standards

* Phase-dependence to lunar irradiance
* SeaWiFS/MODIS and PLEIADES _ Gene Eplee

* Libration correction by NASA at 55° (VIIRS) | NASA




ROLO Observatory

Flagstaff, AZ
Altitude 2143 m

*Courtesy of Tom Stone, USGS, Flagstaff, AZ




ROLO Observational Program

Filter bands e Spatially resolved radiance images
—VNIR 23 bands, 350-950 nm * 6+ years in operation, >85000 lunar images
— SWIR 9 bands. 950-2500 nm * phase angle coverage from eclipse to 90°

* Operations ended in 2003
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*Courtesy of Tom Stone, USGS, Flagstaff, AZ



ROLO Model: Equivalent Lunar Disk Reflectance
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1. Thereis a point-spread correction to the lunar data (for
radiance).

- Not needed for Irradiance, not clear to me how this is currently
handled.

2. To getto lrradiance, a reference Solar spectrum is used; the
ROLO Model v311g uses Wehrli, NASA Goddard was using
Thuillier.




Ratio of Wehrli to Thuillier Models of
Solar Spectral Irradiances

Ratio [Wehrli/Thuillier]
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Use of the ROLO Model to trend Satellite Sensors Band Response
(Gene Eplee and the NASA Goddard OBPG)

SeaWiFS bands temporal responsivity
degradation Corrected using the ROLO Model

Relative only
o Phase angles kept to = 7°
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How well does it do? & What are the uncertainties?
Jim Butler, presented at the Lunar Calibration Workshop, May 2012

April 14, 2003 AM Instrument Lunar Comparison

25

@
°
= 20
< ° o\ |
g 10 1
§ A AL

5
: ' [Ww LT
s o
£ ' V
o 5
=

_10 T T L] T L] L] T
300 600 300 1200 1500 1800 2100 2400 2700
Wavelength (nm)
# MODIS = MISR(9cameraavg) A SeaWiFS ——Hyperion @ ALl

Relative differences between instruments include uncertainty components from:

Use of different solar irradiance spectra
Different approaches in calculating integrated lunar irradiances

Inherent differences/uncertainties in instrument calibrations

Uncertainties in the ROLO Model estimated to be 5 % to 10 %, not Sl traceable.




ROLO Model v Satellite sensors
(Absolute)

< Hypqion SeaWiFS, MODIS, & VIIRS
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SeaWiFS difference up to ~ 10 % SeaWiFS difference upto ~ 5%
MODIS differences up to ~ 15 % MODIS differences up to ~ 10 %

VIIRS differences up to ~15 % (comp. w/MODIS)

Tom Stone, USGS Gene Eplee, Goddard



On-Orbit Sl-traceable, k=2, Sensor Accuracy Requirements
Kurt Thome, NASA, NIST Lunar Calibration Workshop, May 2012

* Operational systems
* 3 % absolute with 1 % sensor-to-sensor

e Climate applications (CLARREO)
* 0.3 %500 nm to 900 nm; 1 % other spectral regions

Jim Butler, NASA, NIST Lunar Calibration Workshop, May 2012

While CLARREO needs 0.3 % k=2, a lunar irradiance model with 1 % to 3 %
absolute uncertainties k=2 relative to the SI makes the Moon a viable

(affordable) on-orbit source for

1.Transfer to Orbit Effects
2.Ensuring consistency between the calibrations not only of overlapping but also

non-overlapping sensors (to help minimize gap effects)
3.Possibly/potentially as an absolute S| traceable on-orbit calibration source

Physica| Measurement Laborcfor)'i“ —"""1



NIST measurements of TOA Lunar Irradiance
Whipple Observatory, Mt Hopkins, Amado AZ

Santa Rita Mountains, Coronado National Forest, ~30 miles from Nogales, Mexico

Summit

Elevation: Summit 8550 ft.

Ridge 7580 ft

Set our uncertainty goals to be 1 % or less (k=2)



NIST Absolute Top-of-the-Atmosphere (TOA) Lunar Irradiance Measurements
have been made at the Whipple Observatory, Mt. Hopkins, AZ for
~ 2 years (two two-week visits, Spring and Fall, per year)

Lunar measurements piggy-backing on a longer time series of stellar measurements
designed to establish a suite of Sl-traceable absolutely calibrated ‘standard’ stars

NIST Dome
The Ridge

ROLO calibration based on measurements of
Vega; NIST standard star measurements
include Vega.

Physicc1| Measurement Laboratory -



Calibrating the Telescope — on the Ground
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Calibrating the Telescope

Tele/Mon = telescope calibration
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- Independent of the uncertainty in the Reference Instrument
-Uncertainty is between 0.1 % and 0.2 % 500 nm to 900 nm

Physical Measurement Laboratory ™ 8 Sais




Absolute TOA Lunar Irradiance

Lunar Irradiance Uncertainty Budget
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~A0 % i i i
40 % difference in magnitude Calibration from 500 nm to 920 nm

10° difference in phase
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Absolute TOA Lunar Irradiance (k=1) Uncertainty Budget

Uncertainty dominated by the Telescope Calibration
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Comparison between Measurements and the ROLO Model
Band-averaged to SeaWiFS Bands
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For the 2 nights, the irradiance differed by 40 % and the phase by 10 %.
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Comparison between Measurements and the ROLO Model
Consider Uncertainties
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Two lunar irradiance data sets (potential absolute tie-points to the ROLO Model)
have k=2 uncertainties 1 % or less from ~500 nm to ~940 nm
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Empirical Phase Correction to the ROLO Model from
SeaWiFS Measurements of the Moon
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Gene Eplee, NASA Goddard

Magnitude of the phase correction : 1.7 % (-50° to -6° and 5° to 60°)
Let the uncertainty in the phase dependence of the ROLO Model =1.7 %

Magnitude of the uncertainty in the libration correction: 0.5 %

Physica| Measurement Laboratory"' “'—‘7;“(



Absolute Lunar Irradiance Uncertainty Budget
(including uncertainties in phase and libration correction factors)

Uncertainty component (k=1) [%]
Phase Combined
Wavelength Absolute . Libration Standard

_ Correction _ i

[nm] Irradiance o o correction Uncertainty

(7" to 507)

[%]
400 1.5 1.7 0.5 2.32
450 0.85 1.7 0.5 1.97
500 0.56 1.7 0.5 1.86
550 0.45 1.7 0.5 1.83
600 0.44 1.7 0.5 1.83
650 0.4 1.7 0.5 1.82
700 0.38 1.7 0.5 1.81
750 0.37 1.7 0.5 1.81
800 0.36 1.7 0.5 1.81
850 0.36 1.7 0.5 1.81
900 0.35 1.7 0.5 1.81

Multi-band filter radiometry ==) Hyperspectral measurements
Uncertainties reduced from 5 - 10 % to ~2 %; the tie-points are Sl-traceable.

Physical Measurement Laboratory ™ 4



1. Absolute Irradiance
Calibration Uncertainty
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Reference CAS Calibration

Measurement Uncertainty
Lunar Irradiance
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Absolute Calibration of the Reference CAS Instrument

FEL-Lamp calibration the single largest source of uncertainty
Solution: Map out the Single Pixel Responsivity of every pixel using SIRCUS

Expanded (k = 2) uncertainties of the Single Pixel Responsivities
)0 2011 NIST Irradlance Scale x104 CAS Single Pixel Response from Pixel 550 to 620
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0.6 % @ 900 nm Wavelength
0.9 % @ 500 nm

Uncertainty: 0.2 % or less (k=2) Si range
1.25% @ 350 nm

H. Yoon and Charles Gibson, Spectral Irradiance

Calibrations, NIST Special Publ. 250-89 (July 2011).
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Development of Transfer Standard Spectrographs to
/ P,
What’s new: establish detector-based radiance and irradiance scales

Spectrograph Characteristics Radiometric Stability v an FEL-lamp

- CCD-based fiber-fed slit spectrograph Calibration setup not maintained;
- 380 nm to 1040 nm. 4 nm resolution reproduced for each measurement.

- Temperature-stabilized CCD
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Most of the observed variability from
fiber insertion into CAS

Physical Measurement Laboratory™



Developing Protocols to characterize and calibrate Spectrographs
Validate Instrument Responsivity in the field based on Si detectors

Monochromatic Light from Detector-based Scale

Supercontinuum Source-pumped Laser held on Si photodiodes
Line Tunable Filter

Telescope

Si '
T |

 Range (om) | rwim L-
Vis-NIR 400-1000 2.5nm Datalogger
SWIR 1000-2300 4 nm

vy

WL scale verified
by high res SG

e e
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Digression: Spectrograph-based Radiance Scale
Potential impact on lamp-llluminated Integrating Sphere uncertainties

* During NASA’s Earth Observing System-era, a
series of source radiance validation campaigns
were planned and executed by the EOS Project
Office with the goal of validating the radiances
assigned to laboratory calibration sources,
principally lamp-illuminated integrating spheres,
and establishing an uncertainty budget for the
disseminated radiance scale.

e Based on an analysis of 7 years’ worth of data,
Butler et al.! assigned an uncertainty in
disseminated radiance scales of 2% to 3% in the
Vis/NIR (silicon) region, increasing to 5 % in the
short-wave infrared region.

From source-based to detector-based radiance scale (using a Transfer Standard
Spectrograph to hold the radiance scale) may reduce the uncertainties in the

disseminated Radiance Scale an order of magnitude.

1Butler, J. J., et al., Validation of radiometric standards for the laboratory calibration of reflected-solar Earth
observing satellite instruments, Proc. SPIE 6677, 667707 (2007).

Physica| Measurement Laboratory"' “'—‘7;“(



Digression 2: How do we Validate the Spectrograph Calibration
NIST primary standard Blackbody Sources

Gold-point blackbody: 1337 K
Variable temperature blackbody: 3000 K
Carbon-Metal Eutectics: up to 2800 K

Radiated Power Density
Planck Law
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II. Phase dependence

SeaWiFS / MODIS Lunar Calibration Comparison
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Consider PLEIADES data set
Gene Eplee et al., GSFC
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MODIS (US) &PLEIADES | (Fr and Italy) v the ROLO Model
Relative Spectral Response of Pleiades and MODIS Bands

MODIS has many of the same bands as SeaWiFS
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Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).
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Pleiades and Modis v ROLO Model
Phase angles of +/- 55.5°
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MODIS has an on-board diffuser — derives calibration from solar looks
PLEIADES calibration from ground-truth sites.

(SeaWiFS used a lamp-illuminated Integrating Sphere.)

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).
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Empirical correction to the Phase dependence of the ROLO Model
using MODIS, Pleiades-1B and SeaWiFS measurements

AQUA MODIS

2 - '3 v ™ 20
MODIS 18 « PLEIADES 18 TERRA MODIS

14 MODIS

Lunar phase angle (*)

Offsets for SeaWiFS, MODIS and PLEIADES set to 0 at 7° phase using absolute measurements.
Fit residual empirical correction, £60° with an uncertainty of ??
[~0.2 % - about 10 % of the total correction]
(Just a best guess. Need to more closely examine PLEIADES data set)

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).




3. Libration
Lunar Phase and Libration Corrections to the ROLO

Model using SeaWiFS as a proxy
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In 2015, Eplee et al. re-examined the SeaWiFS-based empirical libration correction
and came up with an additional 0.2 % over the previous empirical correction.
Estimate a 0.2 % uncertainty in the empirical libration correction.

Eplee, J., R. E., F.S. Patt, and G. Meister, Geometric effects in SeaWiFS lunar observations. Proc. SPIE, 2015. 9607: p. 960704-1.
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Expectations if

1. we can maintain the Spectrograph Uncertainties in the Field
2. 0.2 % uncertainty in the Phase Correction holds up

Uncertainty component (k=1) [%]
Combined
Wavelength Absolute Phase Libration Standard

[nm] Irradiance Correction correction Uncertainty

[%]
400 0.2 0.2 0.2 0.35
450 0.2 0.2 0.2 0.35
500 0.2 0.2 0.2 0.35
550 0.2 0.2 0.2 0.35
600 0.2 0.2 0.2 0.35
650 0.2 0.2 0.2 0.35
700 0.2 0.2 0.2 0.35
750 0.2 0.2 0.2 0.35
800 0.2 0.2 0.2 0.35
850 0.2 0.2 0.2 0.35
900 0.2 0.2 0.2 0.35

CLARREO Uncertainties: 0.3 % from 500 nm to 900 nm
1 % in other regions

Meet CLARREO uncertainty requirements outside of the 500 nm to 900 nm range
To meet CLARREO requirements 0.3 %, k=2: All components reduced to 0.1 %




Additional Tie-points: LASP’s HySICS measurements

Hear more about the second balloon flight from Greg Kopp

* HySICS instrument
* 350 nm to 2500 nm; 8 nm resolution or better
* Uncertainties less than 0.2 %

* Balloon flights

e 29 Sept 2013 and 18 Aug 2014
e 8 5Hand 9 H duration
e ~120,000 ft

18Aug2014 ﬂight: Courtesy LASP/Joey Espejo

Measured Solar and Lunar Spectral Radiance
May provide an additional tie point to the ROLO model &
facilitate a comparison with Mt. Hopkins-based Lunar Irradiance

Physical Measurement Laboratory™ ——7}:11,



Reducing the Measurement Uncertainty

1. Consider high altitude aircraft flights for both Solar and Lunar
Irradiance Measurements

* ER2 Flights (2 campaigns/year, 1 to 2 weeks duration

* Above 95 % of the atmosphere; lower uncertainties
achievable quickly

* Lunar measurements would provide tie-points for the
ground-based measurements

e 1 7°phase (Tie to SeaWiFS/PLEIADES) ' -!

* +55°phase (Tie to MODIS/PLEIADES)
* Phase changes ~10 % per night

e Solar measurements validate the
reflectance model of the Moon

1. Solar/Lunar measurements taken on different flights
- instrument can be configured for the particular measurement.
2. Pre and post calibrations in addition to in-flight monitoring

Physical Measurement Laboratory ™ =84 e



Reducing the Measurement Uncertainty
Establish a Lunar/Solar Observatory on Mauna Loa, Hl

e Elevation
* Mt Hopkins elevation 2367m
* Mauna Loa elevation 4169 m

* Atmospheric Characterization - e

< g - v vl o
—~ L N e

* Increase our yield through continuous daily measurements of
Solar &Lunar Spectral Irradiance

* aremotely operated permanent facility

Ideally, generate a new data set to refine the ROLO Model.

Physicq| Measurement Laboratory »



